Biological and Neurocognitive Foundations of Violent Behavior in Iranian Criminal Law

Authors

    Seyedeh Leila Naghibzadeh Department of Law, Sav.C. , Islamic Azad University, Saveh, Iran.
    Mahmoud Habibitabar * Department of Law, Sav.C., Islamic Azad University, Saveh, Iran 0385947801@iau.ac.ir
    Masoud Mostafapour Department of Law, Shahed University, Tehran, Iran.

Keywords:

Biological foundations, Neuroscience foundations, Violent behavior, Iranian criminal law

Abstract

Violence, as one of the most challenging dilemmas facing contemporary societies, often stems from a complex interplay of psychological disorders, neurological impairments, hormonal fluctuations, and social pressures. On the one hand, traditional criminal justice systems have predominantly adopted punitive and reactive approaches; on the other hand, recent findings in neuroscience and psychology have opened new horizons for biological and behavioral prevention of violence. This study, using a descriptive-analytical method and grounded in an interdisciplinary theoretical framework, offers a comprehensive examination of the biological and neurocognitive foundations of violent behavior. Based on developmental, social, situational, and biopsychological prevention theories, the research demonstrates that violent conduct is not merely a social or educational phenomenon; rather, it is deeply rooted in biological, neural, and hormonal mechanisms that must be addressed in modern criminological paradigms. The connection between physical activity and brain structures, neurotransmitter systems, and hormonal secretions—alongside its role in the psychological and social regulation of individuals—gains a central position in violence prevention strategies. Furthermore, the emergence of neurolegal concepts within the domain of modern criminal law provides a platform through which scientific data can contribute to more just decisions and more targeted interventions. This interdisciplinary framework establishes a scientific foundation for the development of more humane and effective criminal justice policies.

Downloads

Download data is not yet available.

References

Aharoni, R. (2013). Foundation for a general strain theory of crime and delinquency. In Crime, Inequality and the State (Vol. 30, pp. 47-88). https://doi.org/10.4324/9781003060581-23

Archer, J. (2006). Testosterone and human aggression: An evaluation of the challenge hypothesis. Neuroscience & Biobehavioral Reviews, 30(3), 319-345. https://doi.org/10.1016/j.neubiorev.2004.12.007

Batty, G. D., Kivimäki, M., & Bell, S. (2018). Physical activity and violence prevention: Epidemiological evidence. British Journal of Sports Medicine, 52(3), 176-178.

Beccaria, C. (1996). On Crimes and Punishments. Macmillan.

Bentham, J. (1789). An Introduction to the Principles of Morals and Legislation. https://doi.org/10.1093/oseo/instance.00077240

Blair, R. J. R. (2001). Neurocognitive models of aggression, the antisocial personality disorders, and psychopathy. Journal of neurology, neurosurgery & psychiatry, 71(6), 727-731. https://doi.org/10.1136/jnnp.71.6.727

Blair, R. J. R. (2010). Neuroimaging of psychopathy and antisocial behavior: A targeted review. Current psychiatry reports, 12(1), 76-82. https://doi.org/10.1007/s11920-009-0086-8

Boyle, L. M., Sheng, W., Leroy, F., Sahai, R., Irfan, S., Lee, H.-J., Villegas, A., Young, W. S., & Siegelbaum, S. A. (2024). The ventral CA2 region of the hippocampus and its differential contributions to social memory and social aggression. bioRxiv. https://doi.org/10.1101/2024.06.07.597964

Brower, M. C., & Price, B. H. (2001). Neuropsychiatry of frontal lobe dysfunction in violent and criminal behavior: a critical review. American Journal of Psychiatry, 158(10), 720-726. https://doi.org/10.1176/appi.ajp.158.10.1783

Bufkin, J., & Luttrell, V. R. (2005). Neuroimaging studies of aggressive and violent behavior: current findings and implications for criminology and criminal justice. Trauma, Violence, & Abuse, 6(2), 176-191. https://doi.org/10.1177/1524838005275089

Chaouloff, F. (1989). Physical exercise and brain monoamines: A review. Acta Physiologica Scandinavica, 137(1), 1-13. https://doi.org/10.1111/j.1748-1716.1989.tb08715.x

Clarke, R. V. (1997). Situational Crime Prevention: Successful Case Studies. Harrow and Heston.

Coccaro, E. F., Fanning, J. R., Phan, K. L., & Lee, R. (2006). Serotonin and impulsive aggression. CNS Spectrums, 20(3), 295-302. https://doi.org/10.1017/S1092852915000310

Crawford, A. (1998). Crime Prevention and Community Safety: Politics, Policies and Practices. Longman.

Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—a possible prelude to violence. Science, 289(5479), 591-594. https://doi.org/10.1126/science.289.5479.591

Di Marino, V., Etienne, Y., & Niddam, M. (2016). Anatomy of emotions via the history of neuroanatomy and neurosciences. In Anatomy of Emotions via the History of Neuroanatomy and Neurosciences (pp. 5-10). Springer International Publishing. https://doi.org/10.1007/978-3-319-23243-0_2

Dishman, R. K., Berthoud, H. R., Booth, F. W., Cotman, C. W., Edgerton, V. R., Fleshner, M. R., & Zigmond, M. J. (2006). Neurobiology of exercise. Obesity, 14(3), 345-356. https://doi.org/10.1038/oby.2006.46

Dixon, M. L., Thiruchselvam, R., Todd, R. M., & Christoff, K. (2017). Emotion and the prefrontal cortex: An integrative review. Psychological bulletin, 143(10), 1033-1081. https://doi.org/10.1037/bul0000096

Farahany, N. (2016). The impact of behavioral sciences on criminal law. Oxford University Press.

Farington, G., & Welsch, O. (2007). How does physical activity modulate hormone responses? Biomolecules, 14(11), 1418. https://doi.org/10.3390/biom14111418

Greene, J., & Cohen, J. (2004). For the law, neuroscience changes nothing and everything. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1451), 1775-1785. https://doi.org/10.1098/rstb.2004.1546

Heinrichs, M., von Dawans, B., & Domes, G. (2009). Oxytocin, vasopressin, and human social behavior. Frontiers in neuroendocrinology, 30(4), 548-557. https://doi.org/10.1016/j.yfrne.2009.05.005

Hernandez, M., Denburg, N. L., & Tranel, D. (2009). A neuropsychological perspective on the role of the prefrontal cortex in reward processing and decision-making. In Advances in Psychology Research (pp. 291-306). Academic Press. https://doi.org/10.1016/B978-0-12-374620-7.00013-3

Herrera, S. G. R., & Leon-Rojas, J. (2024). The effect of aerobic exercise in neuroplasticity, learning, and cognition: A systematic review. Cureus. https://doi.org/10.7759/cureus.54021

Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58-65. https://doi.org/10.1038/nrn2298

Jones, O. D., Marois, R., Farah, M. J., & Greely, H. T. (2013). Law and neuroscience. Journal of Neuroscience, 33(45), 17624-17630. https://doi.org/10.1523/JNEUROSCI.3254-13.2013

Kim, J. H., Song, E. Y., & Kosten, T. A. (2006). Stress effects in the hippocampus: synaptic plasticity and memory. Stress, 9(1), 1-11. https://doi.org/10.1080/10253890600678004

Kral, T. R. A., Schuyler, B. S., Mumford, J. A., Rosenkranz, M. A., Lutz, A., & Davidson, R. J. (2018). Impact of short- and long-term mindfulness meditation training on amygdala reactivity to emotional stimuli. NeuroImage, 181, 301-313. https://doi.org/10.1016/j.neuroimage.2018.07.013

Krug, E. G., Dahlberg, L. L., Mercy, J. A., Zwi, A. B., & Lozano, R. (2002). World report on violence and health. World Health Organization. https://doi.org/10.1016/S0140-6736(02)11133-0

Li, A., Yau, S. Y., Machado, S., Wang, P., Yuan, T.-F., & So, K.-F. (2019). Enhancement of hippocampal plasticity by physical exercise as a polypill for stress and depression: A review. CNS & Neurological Disorders—Drug Targets, 18(4), 294-306. https://doi.org/10.2174/1871527318666190308102804

Lubans, D., Richards, J., Hillman, C. H., Faulkner, G., Beauchamp, M., Nilsson, M., Kelly, P., Smith, J., Raine, L., & Biddle, S. (2016). Physical activity for cognitive and mental health in youth: a systematic review of mechanisms. Pediatrics, 138(3), e20161642. https://doi.org/10.1542/peds.2016-1642

Maher, C., Tortolero, L., Jun, S., Cummins, D. D., Saad, A., Young, J., Nunez Martinez, L., Schulman, Z., Marcuse, L., Waters, A., Mayberg, H. S., Davidson, R. J., Panov, F., & Saez, I. (2025). Intracranial substrates of meditation-induced neuromodulation in the amygdala and hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 122(6), e2409423122. https://doi.org/10.1073/pnas.2409423122

McBurnett, K., Lahey, B. B., Rathouz, P. J., & Loeber, R. (2000). Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Archives of General Psychiatry, 57(1), 38-43. https://doi.org/10.1001/archpsyc.57.1.38

Meeusen, R., & De Meirleir, K. (1995). Exercise and brain neurotransmission. Sports medicine, 20(3), 160-188. https://doi.org/10.2165/00007256-199520030-00004

Methi, A., Islam, M. R., Kaurani, L., Sakib, M. S., Krüger, D. M., Pena, T., Burkhardt, S., Liebetanz, D., & Fischer, A. (2024). A single-cell transcriptomic analysis of the mouse hippocampus after voluntary exercise. Molecular Neurobiology, 1-18. https://doi.org/10.1007/s12035-023-03869-9

Montoya, E. R., Terburg, D., Bos, P. A., & van Honk, J. (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective. Motivation and Emotion, 36(1), 65-73. https://doi.org/10.1007/s11031-011-9264-3

Morawetz, C., Mohr, P. N. C., Heekeren, H. R., & Bode, S. (2019). The effect of emotion regulation on risk-taking and decision-related activity in prefrontal cortex. Social Cognitive and Affective Neuroscience, 14(10), 1109-1118. https://doi.org/10.1093/scan/nsz078

Morse, S. J. (2006). Brain overclaim syndrome and criminal responsibility: A diagnostic note. Ohio State Journal of Criminal Law, 3, 397-412.

Morse, S. J. (2016). Neuroethics: Neurolaw. In Oxford Handbooks Online. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199935314.013.45

Pardini, M. S., & Patterson, D. (2002). Minds, Brains, and Law: The Conceptual Foundations of Law and Neuroscience. Oxford University Press.

Pinzetta, G., & Leal, T. (2023). Anatomical organization of the amygdala: A brief visual review. Cognitive and Behavioral Neurology. https://doi.org/10.1097/WNN.0000000000000364

Raine, A. (2002). Biosocial studies of antisocial and violent behavior in children and adults: A review. Journal of abnormal child psychology, 30(4), 311-326. https://doi.org/10.1023/A:1015754122318

Roberts, H., Pozzi, E., Vijayakumar, N., Richmond, S., Bray, K., Deane, C., & Whittle, S. (2021). Structural brain development and aggression: A longitudinal study in late childhood. Cognitive, Affective, and Behavioral Neuroscience, 21(2), 401-411. https://doi.org/10.3758/s13415-021-00871-3

Romero-Martínez, Á., González, M., Lila, M., Gracia, E., Martí-Bonmatí, L., Alberich-Bayarri, A., Maldonado-Puig, R., Ten-Esteve, A., & Moya-Albiol, L. (2019). The brain resting-state functional connectivity underlying violence proneness: Is it a reliable marker for neurocriminology? A systematic review. Systems Research and Behavioral Science, 9(1), 11. https://doi.org/10.3390/bs9010011

Seo, D., Patrick, C. J., & Kennealy, P. J. (2008). Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggression and Violent Behavior, 13(5), 383-395. https://doi.org/10.1016/j.avb.2008.06.003

Siever, L. J. (2008). Neurobiology of aggression and violence. American Journal of Psychiatry, 165(4), 429-442. https://doi.org/10.1176/appi.ajp.2008.07111774

Silalahi, E. S., & Susanti, N. (2024). Unveiling the neurobiological landscape of emotional regulation: A systematic literature review of multimodal imaging studies. NeuroCrim, 1(1), 42-52. https://doi.org/10.35335/nxcng553

Soshi, T., Andersson, M., Kawagoe, T., Nishiguchi, S., Yamada, M., Otsuka, Y., Nakai, R., Abe, N., Aslah, A., Igasaki, T., & Sekiyama, K. (2021). Prefrontal plasticity after a 3-month exercise intervention in older adults relates to enhanced cognitive performance. Cerebral Cortex, 31(10), 4501-4517. https://doi.org/10.1093/cercor/bhab102

Szabo, A. (2011). Exercise, oxytocin and social bonding. Human Ethology Bulletin, 26(2), 1-16.

van Goozen, S. H., Fairchild, G., Snoek, H., & Harold, G. T. (2007). The evidence for a neurobiological model of childhood antisocial behavior. Psychological bulletin, 133(1), 149-182. https://doi.org/10.1037/0033-2909.133.1.149

World Health Organization. (2002). World report on violence and health.

World Health Organization. (2014). Global status report on violence prevention.

Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research: Neuroimaging, 174(2), 81-88. https://doi.org/10.1016/j.pscychresns.2009.03.012

Downloads

Published

2026-01-21

Submitted

2025-04-24

Revised

2025-07-25

Accepted

2025-08-06

Issue

Section

مقالات

How to Cite

Naghibzadeh, S. L. ., Habibitabar, M., & Mostafapour, M. . (1404). Biological and Neurocognitive Foundations of Violent Behavior in Iranian Criminal Law. The Encyclopedia of Comparative Jurisprudence and Law, 1-23. https://jecjl.com/index.php/jecjl/article/view/258

Similar Articles

1-10 of 195

You may also start an advanced similarity search for this article.